Non-Poisson Counting

Suppose an aliquot of a laboratory sample is being analyzed for a radionuclide and the determinative step of the analysis is a radioassay performed using a radiation counter. The aliquot initially contains N atoms of the analyte, and each of these atoms will produce some nonnegative number of counts C_{i} during the assay. (N might be very large.) Assume the analyte's decay chain includes one or more short-lived states and that the atom emits radiation of some type when decaying from each state. So, each C_{i} may be 0,1 , or greater than 1 .

Assuming the C_{i} are independent and have the same mean $E\left(C_{i}\right)=\mu_{C}$ and variance $V\left(C_{i}\right)=\sigma_{C}^{2}$, the index of dispersion*, or Fano factor, for the total number of counts produced by the N atoms is

$$
\begin{equation*}
J=\frac{V\left(\sum_{i=1}^{N} C_{i}\right)}{E\left(\sum_{i=1}^{N} C_{i}\right)}=\frac{\sum_{i=1}^{N} V\left(C_{i}\right)}{\sum_{i=1}^{N} E\left(C_{i}\right)}=\frac{N \sigma_{C}^{2}}{N \mu_{C}}=\frac{\sigma_{C}^{2}}{\mu_{C}} \tag{1}
\end{equation*}
$$

So, the index of dispersion J is the same regardless of whether we consider the total counts obtained from all N atoms of the analyte or just the counts produced by a single atom.
Question: What is the index of dispersion J for the number of counts C produced by one hypothetical atom of analyte in the source?
Solution: We need expressions for the mean $E(C)$ and the variance $V(C)$, and both of these can be found by conditioning on the history of the atom H.

$$
\begin{equation*}
E(C)=E(E(C \mid H)) \quad \text { and } \quad V(C)=V(E(C \mid H))+E(V(C \mid H)) \tag{2}
\end{equation*}
$$

For a particular history h,

$$
\begin{equation*}
E(C \mid H=h)=\sum_{r \in \mathcal{A}_{h}} \varepsilon_{r} \quad \text { and } \quad V(C \mid H=h)=\sum_{r \in A_{h}} \varepsilon_{r}\left(1-\varepsilon_{r}\right) \tag{3}
\end{equation*}
$$

where A_{h} denotes the set of detectable radiations emitted by the atom in history h, and ε_{r} denotes the instrument's counting efficiency for radiation $r .^{\dagger}$ So, the mean $E(C)$ is given by

$$
\begin{equation*}
E(C)=E(E(C \mid H))=\sum_{h} \operatorname{Pr}[H=h] E(C \mid H=h)=\sum_{h} \operatorname{Pr}[H=h] \sum_{r \in A_{h}} \varepsilon_{r} \tag{4}
\end{equation*}
$$

where the outer sum is over all possible histories of the atom h, or all histories that produce detectable radiation. The variance $V(C)$ is found as follows:

$$
\begin{align*}
V(C) & =V(E(C \mid H))+E(V(C \mid H)) \\
& =E\left(E(C \mid H)^{2}\right)-E(E(C \mid H))^{2}+E(V(C \mid H)) \\
& =E\left(E(C \mid H)^{2}+V(C \mid H)\right)-E(C)^{2} \\
& =\sum_{h} \operatorname{Pr}[H=h]\left(E(C \mid H=h)^{2}+V(C \mid H=h)\right)-E(C)^{2} \\
& =\sum_{h} \operatorname{Pr}[H=h]\left(\left(\sum_{r \in A_{h}} \varepsilon_{r}\right)^{2}+\sum_{r \in A_{h}} \varepsilon_{r}\left(1-\varepsilon_{r}\right)\right)-E(C)^{2} \tag{5}\\
& =\sum_{h} \operatorname{Pr}[H=h]\left(\left(\sum_{r \in A_{h}} \varepsilon_{r}\right)^{2}-\sum_{r \in A_{h}} \varepsilon_{r}^{2}\right)+\sum_{h} \operatorname{Pr}[H=h] \sum_{r \in A_{h}} \varepsilon_{r}-E(C)^{2} \\
& =\sum_{h} \operatorname{Pr}[H=h]\left(\left(\sum_{r \in A_{h}} \varepsilon_{r}\right)^{2}-\sum_{r \in A_{h}} \varepsilon_{r}^{2}\right)+E(C)-E(C)^{2}
\end{align*}
$$

So, J is given by

[^0]\[

$$
\begin{equation*}
J=\frac{V(C)}{E(C)}=1+\frac{S}{E(C)}-E(C) \tag{6}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
S=\sum_{h} \operatorname{Pr}[H=h]\left(\left(\sum_{r \in A_{h}} \varepsilon_{r}\right)^{2}-\sum_{r \in A_{h}} \varepsilon_{r}^{2}\right) \quad \text { and } \quad E(C)=\sum_{h} \operatorname{Pr}[H=h] \sum_{r \in A_{h}} \varepsilon_{r} \tag{7}
\end{equation*}
$$

In many cases $E(C)$ is very small, because C is almost always zero. In these cases we can use

$$
\begin{equation*}
J=1+\frac{S}{E(C)} \tag{6'}
\end{equation*}
$$

Simplifying assumption: Assume the efficiency of the radiation counter is either ε or 0 for each radiation emitted by the decaying atom. Let R denote the number of detectable radiations emitted by the atom (a random variable). For a particular history of the atom, h, let R_{h} denote the number of detectable radiations emitted in that history (a number). In this case,

$$
\begin{gather*}
E(C)=\varepsilon \sum_{h} \operatorname{Pr}[H=h] R_{h}=\varepsilon E(R) \tag{8}\\
S=\varepsilon^{2} \sum_{h} \operatorname{Pr}[H=h]\left(R_{h}^{2}-R_{h}\right)=\varepsilon^{2} E\left(R^{2}-R\right) \tag{9}
\end{gather*}
$$

where

$$
\begin{equation*}
E(R)=\sum_{h} \operatorname{Pr}[H=h] R_{h} \quad \text { and } \quad E\left(R^{2}-R\right)=\sum_{h} \operatorname{Pr}[H=h]\left(R_{h}^{2}-R_{h}\right) \tag{10}
\end{equation*}
$$

Notice that $E\left(R^{2}-R\right)=0$ unless there are histories h for which $R_{h}>1$.
Equation 6 then becomes

$$
\begin{equation*}
J=1+\varepsilon\left(\frac{E\left(R^{2}-R\right)}{E(R)}-E(R)\right) \tag{11}
\end{equation*}
$$

and equation 6 ' becomes

$$
\begin{equation*}
J=1+\varepsilon \frac{E\left(R^{2}-R\right)}{E(R)} \tag{11'}
\end{equation*}
$$

When equation 11 ' is valid, it can be used to obtain bounds for the value of J. It is easy to see that

$$
\begin{equation*}
R^{2} \leq R_{\max } R \tag{12}
\end{equation*}
$$

where $R_{\max }$ denotes the maximum possible value of R, or the maximum number of detectable radiations a decaying atom of the analyte can emit. Therefore,

$$
\begin{equation*}
E\left(R^{2}-R\right) \leq E\left(R_{\max } R-R\right)=\left(R_{\max }-1\right) E(R) \tag{13}
\end{equation*}
$$

Equations 11' and 13 together imply

$$
\begin{equation*}
1 \leq J \leq 1+\varepsilon\left(R_{\max }-1\right) \tag{14}
\end{equation*}
$$

Example 1: When analyzing a sample for ${ }^{226}$ Ra by counting emanated ${ }^{222} R \mathrm{n}$ in a Lucas cell, where $R_{\max }=$ 3 and $\varepsilon \approx 0.75$, inequality 14 implies $1 \leq J \leq 1+0.75(3-1)=2.5$.

Example 2: When analyzing a sample for ${ }^{234}$ Th by beta-counting, where $R_{\max }=2$ and $\varepsilon \approx 0.5$, inequality 14 implies $1 \leq J \leq 1+0.5(2-1)=1.5$.

Example 3: Consider the ${ }^{226} \mathrm{Ra}$ analysis again. A slightly simplified decay chain for ${ }^{226} \mathrm{Ra}$ is

$$
{ }^{226} \mathrm{Ra} \rightarrow{ }^{222} \mathrm{Rn} \rightarrow{ }^{218} \mathrm{Po} \rightarrow{ }^{214} \mathrm{~Pb} \rightarrow{ }^{214} \mathrm{Bi} \rightarrow{ }^{214} \mathrm{Po} \rightarrow{ }^{210} \mathrm{~Pb}
$$

Although ${ }^{210} \mathrm{~Pb}$ is not stable, it is relatively long-lived, and we can consider it to be essentially stable when calculating J. Number these states sequentially from 0 to 6 . The history of a ${ }^{226}$ Ra atom in the sample aliquot may now be defined by:
(a) the state, F, of the atom at the time when the Lucas cell is filled;
(b) whether the atom is recovered and captured in the Lucas cell ($Y=1$ or 0);
(c) the state, B, of the atom at the beginning of the counting measurement; and
(d) the state, T, of the atom at the end of the counting measurement.

We assume that $Y=0$ unless $F=1$. I.e., an atom can be recovered only if it happens to be in the ${ }^{222} \operatorname{Rn}$ state when the Lucas cell is filled. Let

```
\(t_{\mathrm{I}}=\) time allowed for ingrowth of \({ }^{222} \mathrm{Rn}\) from \({ }^{226} \mathrm{Ra}\) (ending when the Lucas cell is filled);
\(t_{\mathrm{D}}=\) time from filling of the Lucas cell till counting begins;
\(t_{\mathrm{S}}=\) count time; and
\(\varepsilon=\) counting efficiency for alpha-particles.
```

Then

$$
\begin{equation*}
E\left(R^{n}\right)=\sum_{i=0}^{6} \sum_{j=i}^{6} \sum_{k=j}^{6} \operatorname{Pr}[Y=1, F=i, B=j, T=k] R_{j, k}^{n}, \quad \text { for } n=1 \text { or } 2, \tag{15}
\end{equation*}
$$

where $R_{j, k}$ denotes the number of alpha-particles emitted as an atom decays from state j to state k. We can omit histories where $Y \equiv 0$ (e.g., when $i \neq 1$) or where $R_{j, k}=0$ (e.g., when $j=6$ or $k=j$). So,

$$
\begin{equation*}
E\left(R^{n}\right)=\sum_{j=1}^{5} \sum_{k=j+1}^{6} \operatorname{Pr}[Y=1, F=1, B=j, T=k] R_{j, k}^{n} \tag{16}
\end{equation*}
$$

and we can calculate the probability of each remaining history as follows:

$$
\begin{align*}
\operatorname{Pr}[Y=1, F=1, B=j, T=k] & =\operatorname{Pr}[F=1] \operatorname{Pr}[Y=1 \mid F=1] \operatorname{Pr}[B=j \mid F=1] \operatorname{Pr}[T=k \mid B=j] \\
& =P_{0,1}\left(t_{\mathrm{I}}\right) \operatorname{Pr}[Y=1 \mid F=1] P_{1, j}\left(t_{\mathrm{D}}\right) P_{j, k}\left(t_{\mathrm{S}}\right) \tag{17}
\end{align*}
$$

where $P_{i, j}(t)$ denotes the function that gives the probability that an atom initially in state i will be in state j after time t has elapsed. So,

$$
\begin{equation*}
E\left(R^{n}\right)=P_{0,1}\left(t_{\mathrm{I}}\right) \operatorname{Pr}[Y=1 \mid F=1] \sum_{j=1}^{5} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}^{n} \tag{18}
\end{equation*}
$$

In theory,

$$
\begin{equation*}
P_{i, j}(t)=\lambda_{i} \lambda_{i+1} \cdots \lambda_{j-1} \sum_{k=i}^{j} \frac{\mathrm{e}^{-\lambda_{k} t}}{\prod_{\substack{p=i \\ p \neq k}}^{j}\left(\lambda_{p}-\lambda_{k}\right)}, \quad \text { for } i \leq j \tag{19}
\end{equation*}
$$

where λ_{i} is the decay constant for state i, although other formulations may be better for accurate calculations. Note that $P_{0,1}\left(t_{\mathrm{I}}\right)$ is the probability that an atom of ${ }^{226} \mathrm{Ra}$ (state 0) will be an atom of ${ }^{222} \mathrm{Rn}$ (state 1) after time t_{I} has elapsed, and the long half-life of ${ }^{226} \mathrm{Ra}$ makes this is a very small probability. So, $E(R)$ is very small, and we can estimate J by

$$
\begin{equation*}
J=1+\varepsilon \frac{E\left(R^{2}-R\right)}{E(R)}=1+\varepsilon \frac{\sum_{j=1}^{5} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\sum_{j=1}^{5} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}} \tag{20}
\end{equation*}
$$

The following table shows the values of $R_{j, k}$ to be used in equation 20.

$\boldsymbol{R}_{j, k}$					
$j \quad k$	$\begin{gathered} 2 \\ { }^{218} \mathrm{Po} \end{gathered}$	$\begin{gathered} 3 \\ { }^{214} \mathrm{~Pb} \end{gathered}$	$\begin{gathered} 4 \\ { }^{214} \mathrm{Bi} \end{gathered}$	$\begin{gathered} 5 \\ { }^{214} \mathrm{Po} \end{gathered}$	$\begin{gathered} 6 \\ { }^{210} \mathrm{~Pb} \end{gathered}$
$1{ }^{222} \mathrm{Rn}$	1	2	2	2	3
$2{ }^{218} \mathrm{Po}$	0	1	1	1	2
$3 \quad{ }^{214} \mathrm{~Pb}$		0	0	0	1
$4 \quad{ }^{214} \mathrm{Bi}$			0	0	1
$5 \quad{ }^{214} \mathrm{Po}$				0	1

Note that if $j>2$ or $k<j+2$, then $R_{j, k}^{2}=R_{j, k}$ because $R_{j, k}=0$ or 1 . So,

$$
\begin{equation*}
J=1+\varepsilon \frac{\sum_{j=1}^{2} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+2}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\sum_{j=1}^{5} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}} \tag{21}
\end{equation*}
$$

Equation 21 still needs simplification to be practical for implementation at a typical lab. With this goal in mind, if we assume t_{D} is long enough for the radon progeny to reach equilibrium, we can estimate

$$
\begin{align*}
\frac{E\left(R^{2}-R\right)}{E(R)} & =\lim _{t_{\mathrm{D}} \rightarrow \infty} \frac{\sum_{j=1}^{2} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+2}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\sum_{j=1}^{5} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}}=\lim _{t_{\mathrm{D}} \rightarrow \infty} \frac{\sum_{j=1}^{2} \mathrm{e}^{\lambda_{1} t_{\mathrm{D}}} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+2}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\sum_{j=1}^{5} \mathrm{e}^{\lambda_{1} t_{\mathrm{D}}} P_{1, j}\left(t_{\mathrm{D}}\right) \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}} \tag{22}\\
& =\frac{\sum_{j=1}^{2} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+2}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\sum_{j=1}^{5} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}}
\end{align*}
$$

With a reliable algorithm (e.g., Siewers) for $P_{j, k}\left(t_{s}\right)$, this ratio can be calculated accurately. Since the ratio is a function of t_{S} but not t_{D}, its values can also be tabulated easily.

$\boldsymbol{t}_{\mathbf{S}} / \mathbf{m i n}$	$\boldsymbol{E}\left(\boldsymbol{R}^{\mathbf{2}}-\boldsymbol{R}\right) / \boldsymbol{E}(\boldsymbol{R})$	$\boldsymbol{t}_{\mathbf{S}} / \mathbf{m i n}$	$\boldsymbol{E}\left(\boldsymbol{R}^{\mathbf{2}}-\boldsymbol{R}\right) / \boldsymbol{E}(\boldsymbol{R})$	
5	0.269	400	1.760	
10	0.413	500	1.808	
15	0.502	600	1.840	
20	0.566	700	1.863	
30	0.665	800	1.880	
60	0.907	900	1.893	
90	1.107	1000	1.904	
120	1.264	2000	1.952	
150	1.385	3000	1.968	
180	1.476	4000	1.975	
210	1.547	5000	1.980	
240	1.601	6000	1.983	
300	1.680	1.994		

The limit as $t_{\mathrm{S}} \rightarrow \infty$ is based on the fact that

$$
\lim _{t_{\mathrm{s}} \rightarrow \infty} P_{j, k}\left(t_{\mathrm{s}}\right)= \begin{cases}0 & \text { if } k<6, \tag{23}\\ 1 & \text { if } k=6 .\end{cases}
$$

If we define the cell calibration factor, $C F$, to be the ratio of the expected counts to the expected ${ }^{222} \mathrm{Rn}$ disintegrations in the cell, and if we continue to assume equilibrium of radon and progeny, then

$$
\begin{equation*}
C F=\lim _{t_{\mathrm{D}} \rightarrow \infty} \frac{\varepsilon \times E(R)}{\mathrm{e}^{-\lambda_{1} t_{\mathrm{D}}}\left(1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}\right)}=\frac{\varepsilon}{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}} \sum_{j=1}^{5} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k} \tag{24}
\end{equation*}
$$

Although the value of $C F$ here appears to depend on the count time t_{S}, the assumption of equilibrium means that it does not. The value depends only on the efficiency and on the ratio of the total alpha activity to the ${ }^{222} \mathrm{Rn}$ activity, which remains constant at equilibrium. So, we can take the limit as $t_{\mathrm{S}} \rightarrow \infty$ to get

$$
\begin{equation*}
C F=\varepsilon \sum_{j=1}^{5} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} R_{j, 6}=3.0097 \varepsilon \tag{25}
\end{equation*}
$$

which implies $\varepsilon=C F / 3.0097$. Alternatively, we can consider an infinitesimal count time $t_{\mathrm{S}} \rightarrow 0$ and apply L'Hôpital's Rule to equation 24. The derivatives of $P_{j, k}(t)$ can be calculated using the Maclaurin series:

$$
\begin{equation*}
P_{j, k}(t)=\lambda_{j} \lambda_{j+1} \cdots \lambda_{k-1} \sum_{n=0}^{\infty} \frac{t^{k-j+n}}{(k-j+n)!} h_{n}\left(-\lambda_{j},-\lambda_{j+1}, \ldots,-\lambda_{k}\right) \tag{26}
\end{equation*}
$$

where $h_{n}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ denotes a complete homogeneous symmetric polynomial of degree n. The derivatives at $t=0$ are given by:

$$
P_{j, k}^{(n)}(0)= \begin{cases}0 & \text { if } n<k-j \tag{27}\\ \lambda_{j} \lambda_{j+1} \cdots \lambda_{k-1} \times h_{n-k+j}\left(-\lambda_{j},-\lambda_{j+1}, \ldots,-\lambda_{k}\right) & \text { if } n \geq k-j\end{cases}
$$

In particular, $P_{j, j+1}^{\prime}(0)=\lambda_{j}$ and $P_{j, k}^{\prime}(0)=0$ if $k>j+1$. So,

$$
\begin{align*}
C F & =\varepsilon \frac{\lambda_{1} R_{1,2}+\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} \lambda_{2} R_{2,3}+\frac{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{5}-\lambda_{1}\right)} \lambda_{5} R_{5,6}}{\lambda_{1}} \\
& =\varepsilon\left(1+\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}+\frac{\lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{5}-\lambda_{1}\right)}\right) \tag{28}\\
& =3.0097 \varepsilon
\end{align*}
$$

Note: The factor 3.0097 is the ratio of the total alpha activity to the ${ }^{222}$ Rn activity at equilibrium, and equation 28 shows that it equals the sum of the equilibrium activity ratios for ${ }^{222} \mathrm{Rn},{ }^{218} \mathrm{Po}$, and ${ }^{214} \mathrm{Po}$.
We also have the mathematically less-than-obvious fact that for any count time t_{S},

$$
\begin{equation*}
\sum_{j=1}^{5} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+1}^{6} P_{j, k}\left(t_{\mathrm{S}}\right) R_{j, k}=3.0097\left(1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}\right) \tag{29}
\end{equation*}
$$

which makes $E\left(R^{2}-R\right) / E(R)$ slightly easier to calculate.

$$
\begin{equation*}
\frac{E\left(R^{2}-R\right)}{E(R)}=\frac{\sum_{j=1}^{2} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+2}^{6} P_{j, k}\left(t_{\mathrm{S}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{3.0097\left(1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}\right)} \tag{30}
\end{equation*}
$$

When we use the actual values of $R_{j, k}$, we see that

$$
\begin{equation*}
\frac{E\left(R^{2}-R\right)}{E(R)}=\frac{2 P_{1,3}\left(t_{\mathrm{S}}\right)+2 P_{1,4}\left(t_{\mathrm{S}}\right)+2 P_{1,5}\left(t_{\mathrm{S}}\right)+6 P_{1,6}\left(t_{\mathrm{S}}\right)+\frac{2 \lambda_{1}}{\lambda_{2}-\lambda_{1}} P_{2,6}\left(t_{\mathrm{S}}\right)}{3.0097\left(1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}\right)} \tag{31}
\end{equation*}
$$

To obtain an equation that is more easily implemented in software or a spreadsheet, expand the function $P_{j, k}\left(t_{\mathrm{S}}\right)$ in the numerator of equation 30 and combine terms that have the same exponential factors.

$$
\begin{align*}
\frac{E\left(R^{2}-R\right)}{E(R)}= & \frac{\sum_{j=1}^{2} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{j-1}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right)} \sum_{k=j+2}^{6} \lambda_{j} \lambda_{j+1} \cdots \lambda_{k-1}\left(R_{j, k}^{2}-R_{j, k}\right) \sum_{i=j}^{k} \frac{\mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{\prod_{\substack{p=j \\
p \neq i}}^{k}\left(\lambda_{p}-\lambda_{i}\right)}}{3.0097\left(1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}\right)} \\
& =\frac{\sum_{i=1}^{6} a_{i} \mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}}=\frac{a_{6}+\sum_{i=1}^{5} a_{i} \mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{1} \mathrm{~s}_{\mathrm{s}}}} \tag{32}
\end{align*}
$$

where

$$
\begin{equation*}
a_{i}=\frac{1}{\alpha_{\mathrm{eq}}} \sum_{j=1}^{\min (i, 2)} \sum_{k=\max (i, j+2)}^{6} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{k-1}\left(R_{j, k}^{2}-R_{j, k}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right) \prod_{\substack{p=j \\ p \neq i}}^{k}\left(\lambda_{p}-\lambda_{i}\right)} \tag{33}
\end{equation*}
$$

and where $\alpha_{\text {eq }}$ is the equilibrium alpha activity ratio:

$$
\begin{equation*}
\alpha_{\mathrm{eq}}=1+\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}}+\frac{\lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{5}-\lambda_{1}\right)}=3.0097 \tag{34}
\end{equation*}
$$

Note: If we try a similar trick on the denominator of equation 22, expanding $P_{j, k}\left(t_{s}\right)$ and combining exponential terms, equation 29 shows that we get

$$
\sum_{j=1}^{\min (i, 5)} \sum_{k=\max (i, j+1)}^{6} \frac{\lambda_{1} \lambda_{2} \cdots \lambda_{k-1} R_{j, k}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{1}\right) \cdots\left(\lambda_{j}-\lambda_{1}\right) \prod_{\substack{p=j \\ p \neq i}}^{k}\left(\lambda_{p}-\lambda_{i}\right)}= \begin{cases}-\alpha_{\mathrm{eq}} & \text { if } i=1, \\ \alpha_{\text {eq }} & \text { if } i=6, \\ 0 & \text { otherwise } .\end{cases}
$$

If we define $M=\left(E\left(R^{2}-R\right) / E(R)\right) / \alpha_{\mathrm{eq}}$, then we have

$$
\begin{equation*}
J=1+C F \times M \quad \text { where } \quad M=\frac{c_{6}+\sum_{i=1}^{5} c_{i} \mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{t} \mathrm{~s}}} \tag{35}
\end{equation*}
$$

and where $c_{i}=a_{i} / \alpha_{\mathrm{eq}}$. The coefficients c_{i} are listed below.

$$
\begin{array}{ll}
c_{1}=-0.666536563852 & c_{4}=-0.00484332144608 \\
c_{2}=0.00012614664128 & c_{5} \approx 0 \\
c_{3}=0.00873706508514 & c_{6}=0.662516673571
\end{array}
$$

Notice that $M \rightarrow c_{6}$ as $t_{s} \rightarrow \infty$. So, an upper bound for J is $1+C F \times c_{6}$, and since, $C F \leq 3.0097, J$ never exceeds 2.994 . (Note: Although one might expect the maximum value to be exactly 3 , it is slightly less than 3 , because ${ }^{222} \mathrm{Rn}$ atoms that decay to ${ }^{218} \mathrm{Po}$ before counting starts will generate fewer than 3 counts.)
Examining the coefficients c_{i}, we see that the short half-life ($162.3 \mu \mathrm{~s}$) of ${ }^{214} \mathrm{Po}$ makes the value of c_{5} so small that we can neglect the corresponding term $c_{5} \mathrm{e}^{-\lambda_{5} t_{s}}$ in the equation for M. The short half-life also makes the exponential factor $\mathrm{e}^{-\lambda_{5} t_{s}}$ tiny for any feasible count time t_{s}. So, we end up with the following equations, which are easily implemented in an electronic spreadsheet.

$$
\begin{equation*}
J=1+C F \times M \quad \text { where } \quad M \approx \frac{c_{6}+\sum_{i=1}^{4} c_{i} \mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}} \tag{36}
\end{equation*}
$$

For tiny values of t_{s}, equation 36 in practice may generate severe rounding errors. An application of L'Hôpital's Rule to equation 31, using the Maclaurin series to differentiate $P_{j, k}(t)$, gives the limit:

$$
\begin{equation*}
\lim _{t_{\mathrm{s}} \rightarrow 0} \frac{E\left(R^{2}-R\right)}{E(R)}=0 \tag{37}
\end{equation*}
$$

So, $M \rightarrow 0$ and $J \rightarrow 1$ as $t_{\mathrm{S}} \rightarrow 0$.
A double application of L'Hôpital's Rule to M / t_{S}, still using equation 31 for $E\left(R^{2}-R\right) / E(R)$, leads to the following limit:

$$
\begin{equation*}
\lim _{t_{\mathrm{s}} \rightarrow 0} \frac{M}{t_{\mathrm{S}}}=\lim _{t_{\mathrm{s}} \rightarrow 0} \frac{E\left(R^{2}-R\right) / E(R)}{t_{\mathrm{S}} \alpha_{\mathrm{eq}}}=\frac{2 P_{1,3}^{\prime \prime}(0)}{2 \lambda_{1} \alpha_{\mathrm{eq}}^{2}}=\frac{\lambda_{2}}{\alpha_{\mathrm{eq}}^{2}} \approx 0.02492 \mathrm{~min}^{-1} \tag{40}
\end{equation*}
$$

The time t_{S} must be no more than a few seconds to make this limit useful for approximating M. The same value for the limit can be found by differentiating equation 31 and applying L'Hôpital's Rule once, although that approach may require a little more work.

Example 4: Consider the ${ }^{234} \mathrm{Th}$ analysis again. A simplified decay chain for ${ }^{234} \mathrm{Th}$ is

$$
{ }^{234} \mathrm{Th} \rightarrow{ }^{234 \mathrm{~m}} \mathrm{~Pa} \rightarrow{ }^{234} \mathrm{U}
$$

where the 0.16% branch to ${ }^{234} \mathrm{~Pa}$ has been ignored. The half-life of ${ }^{234} \mathrm{U}$ is so long that we can consider it to be essentially stable. If we apply all the same tricks as in example 3 to beta-counting ${ }^{234} \mathrm{Th}$ and ${ }^{234 \mathrm{~m}} \mathrm{~Pa}$ in equilibrium, we get

$$
\begin{align*}
\frac{E\left(R^{2}-R\right)}{E(R)}= & \frac{\sum_{j=0}^{0} \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{j-1}}{\left(\lambda_{1}-\lambda_{0}\right)\left(\lambda_{2}-\lambda_{0}\right) \cdots\left(\lambda_{j}-\lambda_{0}\right)} \sum_{k=j+2}^{2} P_{j, k}\left(t_{\mathrm{s}}\right)\left(R_{j, k}^{2}-R_{j, k}\right)}{\beta_{\mathrm{eq}}\left(1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{s}}}\right)} \\
= & \frac{P_{0,2}\left(t_{\mathrm{s}}\right)\left(R_{0,2}^{2}-R_{0,2}\right)}{\beta_{\mathrm{eq}}\left(1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{s}}}\right)} \tag{41}\\
& \frac{2 \lambda_{0} \lambda_{1}}{\beta_{\mathrm{eq}}\left(1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{s}}}\right)} \sum_{i=0}^{2} \frac{\mathrm{e}^{-\lambda_{i} t_{\mathrm{s}}}}{\prod_{\substack{p=0 \\
p \neq i}}^{2}\left(\lambda_{p}-\lambda_{i}\right)}
\end{align*}
$$

where $\lambda_{0}=\lambda\left({ }^{234} \mathrm{Th}\right), \lambda_{1}=\lambda\left({ }^{234 \mathrm{~m}} \mathrm{~Pa}\right), \lambda_{2}=\lambda\left({ }^{234} \mathrm{U}\right) \approx 0$, and where β_{eq} is the ratio of the total beta activity to the ${ }^{234} \mathrm{Th}$ activity at equilibrium:

$$
\begin{equation*}
\beta_{\mathrm{eq}}=1+\frac{\lambda_{1}}{\lambda_{1}-\lambda_{0}}=\frac{2 \lambda_{1}-\lambda_{0}}{\lambda_{1}-\lambda_{0}} \tag{42}
\end{equation*}
$$

Algebraic manipulation produces the following:

$$
\begin{equation*}
\frac{E\left(R^{2}-R\right)}{E(R)}=\frac{2}{\beta_{\mathrm{eq}}\left(\lambda_{1}-\lambda_{0}\right)}\left(\lambda_{1}-\lambda_{0} \frac{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{s}}}}\right)=\frac{2}{2 \lambda_{1}-\lambda_{0}}\left(\lambda_{1}-\lambda_{0} \frac{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{s}}}}\right) \tag{43}
\end{equation*}
$$

If the beta-particle counting efficiency is ε, then

$$
\begin{equation*}
J=1+\varepsilon \frac{E\left(R^{2}-R\right)}{E(R)}=1+\frac{2 \varepsilon}{2 \lambda_{1}-\lambda_{0}}\left(\lambda_{1}-\lambda_{0} \frac{1-\mathrm{e}^{-\lambda_{1} t_{\mathrm{s}}}}{1-\mathrm{e}^{-\lambda_{0} t_{\mathrm{S}}}}\right) \tag{44}
\end{equation*}
$$

[^0]: *The index of dispersion is defined as the ratio of the variance to the mean. For Poisson counting, $J=1$.
 ${ }^{\dagger}$ The symbol \in denotes set membership. So, the sum is over all radiations r contained in the set A_{h}, which means all radiations emitted in history h.

